
Kubernetes

Introduction

WOJCIECH	BARCZYŃSKI
(hiring)	Senior	Software	Engineer
Lead	of	Warsaw	Team	-	SMACC
System	Engineer	background
Interests:
working	software
Hobby:
teaching	software	engineering

BACKGROUND
A	top	AI	FinTech	➡	microservices	and	k8s
Before	renew	tech	stack	of	a	top	Indonesian	mobile
ecommerce
3.5y	with	Openstack,	1000+	nodes,	21	data	centers
I	do	not	like	INFRA	:D

KUBERNETES

Kubernetes	-	greek	for	helmsman
Run	and	Manages	containers
Inspired	by	Google's	Borg
Integrated	with	AWS,	GCP,	Azure
Becoming	an	integration	platform	for
large	ecosystem

Manages	Applications	not	Machines!

GOALS

Utilized	resources	nearly	100%
Get	to	applications/services	mindset
Enforce	loosely	couple	software	-	12factor	apps,
Amazon-API	approach
Best	practises	included,	e.g.,	name	service,
metadata	discovery,	...

CURRENT	WINNER

«	Amazon	joined	Kubernetes	
on	10.08.2017	»

WHY	KUBERNETES?
Data	Center	as	a	Black	Box
Batteries	for	your	(12factor)	apps

WHY	KUBERNETES?
Give	you	complete	control	over	your	application
with	simple	yaml	config	files
Use	labels	to	auto-wire	your	app	to	monitoring,
logging,	and	alarming
Let	you	to,	almost	forget,	about	the	infrastructure

Batteries
Load	Balancing
Name	Service	Discovery
Metadata	and	Annotation	support
Decoupled	interface	and	implementation
Labeled	based	matching

DATA	CENTER	AS	A	BLACK	BOX

KUBERNETES

Kubernetes

Ingress	Controller

Node

Node

Node

Node

App

Docker
Image

Service
Deployment

k8s	config:

make	docker_push;	kubectl	create	-f	app-srv-dpl.yaml

SCALE	UP!	SCALE	DOWN!

Kubernetes

Ingress	Controller

Node

Node

Node

Node
App

App

App

scale	3x

kubectl	--replicas=3	-f	app-srv-dpl.yaml

INGRESS	CONTROLLER
api.smacc.io/v1/users	➡	service:	users-v1
api.smacc.io/v2/users	➡	service:	users-v2
api.smacc.io/accounts	➡	service:	accounts
smacc.io	➡	service:	website

INGRESS	CONTROLLER

API

BACKOFFICE	1

DATA

WEB

ADMIN

BACKOFFICE	2

BACKOFFICE	3

API.DOMAIN.COM

DOM
AIN.COM/WEB

BACKOFFICE
.DOMA

IN.C
OM

ORCHESTRATOR
PRIVATE	NETWORKINTERNET

API

LISTEN

(DOCKER,	SWARM,	MESOS...)

ROLLING	UPDATES!

Kubernetes

Ingress	Controller

Node

Node

Node

Node
App

App

App

Docker
Image
v2

	
kubectl	set	image	deployment/app	app=app:v2.0.0

ROLLING	UPDATES!

Kubernetes

Ingress	Controller

Node

Node

Node

Node

App

App

Docker
Image
v2

ROLLING	UPDATES!

Kubernetes

Ingress	Controller

Node

Node

Node

Node

App

App

Docker
Image
v2

App

ROLLING	UPDATES!

Kubernetes

Ingress	Controller

Node

Node

Node

Node
App

App

App

Docker
Image
v2

LOAD	BALANCING

Kubernetes
Worker

Kubernetes
Worker

Kubernetes
Worker

Node

Port
30000

Node Node

App

App

Kubernetes
Worker

Node

App

<<Requests>>

B

Service

Port
30000

Port
30000

Port
30000

Load	Balancer

RESISTANCE!

Kubernetes

Ingress	Controller

Node

Node

Node

Node
App

App

App

RESISTANCE!

Kubernetes

Ingress	Controller

Node

Node

Node
App

App

App

RESISTANCE!
When	the	node	dies	in	flames
When	other	apps	(with	higher	guaranteed	quotas)
eats	all	memory
When	you	need	to	drain	nodes	before	upgrade
You	can	easily	scale	up,	create	machine	and	join	it	to
cluster	(easier	with	kops	or	on	GCE)

FEDERATION

Global	LoadBalancer

App App App

On-premise
Poland

Amazon
eu-west-1

Google
asia-southeast1

MUCH	MORE
Plug-and-play	integrations:

integration	with	AWS,	Google	Cloud	Platform,	and
Azure
multiple	drivers	for	network,	storage,...
you	can	run	on	minikube

MUCH	MORE
Kubernetes	administrated	with	kubernetes:

everything	run	in	pods
e.g.,	you	deploy	your	log	collectors	for	k8s	as	pods:	
http://wbarczynski.pl/centralized-logging-for-kubernetes-with-fluentd-and-
elasticsearch/

http://wbarczynski.pl/centralized-logging-for-kubernetes-with-fluentd-and-elasticsearch/

BASIC	CONCEPTS

Name Purpose

Service Interface Service	Name,
port,	labels,
annotations

Deployment Factory How	many	pods
with	which	docker
images,	labels

Pod Implementation 1+	docker	images
running	in	1	pod

BASIC	CONCEPTS
config	/	secret	➡	config	and	files
ingress-controller	➡	url	pattern	➡	service

SERVICE
service.yaml:

apiVersion:	v1
kind:	Service
metadata:
		name:	api-status
spec:
		ports:
		-	port:	80
				protocol:	TCP
		selector:
				app:	api-status

SERVICE
#	create	the	service	and	deployment
kubectl	create	-f	api-status-srv.yaml
kubectl	create	-f	api-status-dpl.yaml

#	get	to	a	running	docker	(in	a	pod)
kubectl	-it	exec	app-999-8zh1p	/bin/bash

#	check	whether	name	service	works
curl	http://api-status/health
OK

BASIC	CONCEPTS

Service

Pods

Labels

Deployment Deployment

<<	Creates	>>
<<	Creates	>>

Service	Name
Service	Port

deployment.yaml
apiVersion:	apps/v1beta1
kind:	Deployment
metadata:
		name:	api-status-nginx
		app:	api-status
spec:
		replicas:	1
		template:
				metadata:
						labels:
								name:	api-status-nginx
								app:	api-status
				spec:
						containers:
						-	name:	nginx
								image:	nginx

CONFIG
env	variables	in	deployment:

env:
-	name:	SEARCH_ENGINE_USER
		value:	mighty_mouse

CONFIG
feed	envs	from	configmaps:

env:
-	name:	SEARCH_ENGINE_USER
		valueFrom:
						configMapKeyRef:
										name:	my-config
										key:	search.user

CONFIG
you	can	ship	files	using	configmaps/secrets

kubectl	create	configmap	my-config-file
				--from-file=config.json

CONFIG
You	can	also	run	your	own:

HashiCorp	Consul	or	etcd
HashiCorp	Vault

METADATA	AND	ANNOTATIONS
Auto-wiring
Precise	discovery
Reporting
Labeling	targets	for	security	scans
Labeling	critical	services	for	oncall	(see
alertmanager)

MONITORING	WITH	KUBERNETES
You	deploy	a	memcached
Exposed	its	prometheus	metrics	on	metrics/
How	to	ship	metrics?

ANNOTATIONS!
memcached-0-deployment.yaml

https://github.com/skarab7/kubernetes-memcached

apiVersion:	v1
kind:	Service
metadata:
		name:	memcached-0
		labels:
				app:	memcached
				kubernetes.io/name:	"memcached"
				role:	shard-0
				tier:	backend
		annotations:
				prometheus.io/scrape:	"true"
				prometheus.io/scheme:	"http"
				prometheus.io/path:	"metrics"
				prometheus.io/port:	"9150"

INGRESS	CONTROLLER	WITH	TRAEFIK?

ANNOTATIONS!
Use	traefik	instead	of	built-in	reverse	proxy

apiVersion:	extensions/v1beta1
kind:	Ingress
metadata:
		name:	api-status
		namespace:	production
		annotations:
				kubernetes.io/ingress.class:	traefik
spec:
		rules:
		-	host:	api.example.com
				http:
						paths:
								-	path:	/status
										backend:
												serviceName:	api-status

LABELS!
Monitoring	rule	that	uses	labels:

AlertManager

ALERT	ProductionAppServiceInstanceDown
			IF	up	{	environment	=	"production",	app	=~	".+"}	==	0
			FOR	4m
			ANNOTATIONS	{
								summary	=	"Instance	of	{{$labels.app}}	is	down",
								description	=	"	Instance		{{$labels.instance}}	of	app	{{$labels.app}}	has	been	down	for	more	than	4	minutes"
			}

LABELS!
Call	sb	if	the	label	is	severity=page:

AlertManager

	group_by:	[cluster]
	#	If	an	alert	isn't	caught	by	a	route,	send	it	to	the	pager.
	receiver:	team-pager
	routes:
		-	match:
						severity:	page
				receiver:	team-pager

receivers:
-	name:	team-pager
		opsgenie_configs:
		-	api_key:	$API_KEY
				teams:	example_team

THERE	IS	SO	MUCH	MORE
resource	quotas
events	in	Kubernetes
readiness	probes
liveness	probes
volumes
stateful
namespaces
...

KUBERENTES
Awesome	command-line
Resilient	platform
simple	YAML	files	to	setup	your	service,
service	discovery	included
annotations	and	metadata	discovery	included

0.1	➡	1.0
Your	component	needs	to	get	much	more	smarter.

SERVICE	SELF-CONSCIOUSNESS
Your	endpoint:

metrics/
alertrules/-	[WIP]
health/	or	healthz/
info/

DEEP	LOOK	INSIDE
when	I	am	ready	to	serve	requests
when	I	need	to	restart	myself
what	to	do	when	dependent	services	are	down
...

DEEP	LOOK	INSIDE
Am	I	really	stateless?
Caching?
fail-fast,	start	fast

RELATIONS	WITH	OTHERS
master-worker	relationships
waiting	for	other	resources	/	services

12FACTOR	APPS
find	services	by	name	or	URI
move	the	important	config	to	environment	variables

LOGGING
logstash	json	format
make	configurable	with	ENV	variable

EFK	or	ELK

WHAT	WITH	YOUR	DATABASES
Keep	it	in	a	separated	(k8s)	cluster
The	best,	go	with	DaaS
With	Stateful,	you	can	run	your	db	in	k8s

Long	discussion...

MIGRATION	OF	ENV
Staging,	production,	canary,	green/blue	...:

If	you	have	$$$,	have	a	separated	k8s	cluster
If	not,	use	Namespaces

APPS	IN	NEW	WORLD
12	factor	apps	(Heroku,	2012)
much	much	smarter
much	faster
much	more	predictable
much	harder	to	develop	:D
Forging	experience	into	code	[WIP]:
https://github.com/microdevs

https://github.com/microdevs

THANK	YOU

(hiring)	Wojciech	Barczyński
(wojciech.barczynski@smacc.io)

Backup	slides

6	+	1	STEPS
The	big	1	-	making	your	app	smarter

1.	CLEAN	UP
Single	script	for	repo	-	Makefile	[1]
Resurrect	the	README

[1]	With	zsh	or	bash	auto-completion	plugin	in	your	terminal.

2.	GET	BACK	ALL	THE	KNOWLEDGE
Puppet,	Chef,	...	➡	Dockerfile
Check	the	instances	➡	Dockerfile,	README.rst
Nagios,	...	➡	README.rst,	checks/

3.	INTRODUCE	RUN_LOCAL
make	run_local
A	nice	section	on	how	to	run	in	README.rst
Use:	docker-compose

The	most	crucial	point.

4.	GET	TO	KUBERNETES
make	kube_create_config
make	kube_apply
Generate	the	yaml	files	if	your	envs	differ

5.	CONTINUOUS	DEPLOYMENT
Simple	components:

test	code,	build	docker,	push	to	docker	repo
run	the	rolling	update:
kubectl	set	image	deployment/api-status
nginx=nginx:1.9.1
I	use	TravisCI

5.	CONTINUOUS	DEPLOYMENT
Complex	components:

with	label-based	matching,	the	sky	is	the	limit

6.	KEEP	IT	RUNNING
Brigde	the	new	with	old:

You	can	add	your	external	servies	to	the	k8s	Name
Service
You	can	bridge	Kubernetes	services	to	your	Service
Discovery	[1]

[1]	You	can	subscribe	to	K8S	events	to	keep,	e.g.,	your	consul	in	sync

