Kubernetes

Introduction

WOJCIECH BARCZYNSKI

e (hiring) Senior Software Engineer
Lead of Warsaw Team - SMACC

e System Engineer background

e |nterests:
working software

e Hobby:
teaching software engineering

BACKGROUND

e Atop Al FinTech = microservices and k8s

o Before renew tech stack of atop Indonesian mobile
ecommerce

e 3.5y with Openstack, 1000+ nodes, 21 data centers

e | donotlike INFRA:D

KUBERNETES

e Kubernetes - greek for helmsman

e Run and Manages containers

e Inspired by Google's Borg

e Integrated with AWS, GCP, Azure

e Becoming an integration platform for
large ecosystem

Manages Applications not Machines!

GOALS

o Utilized resources nearly 100%

e Getto applications/services mindset

e Enforce loosely couple software - 12factor apps,
Amazon-APl approach

e Best practises included, e.g., name service,
metadata discovery, ...

CURRENT WINNER

« Amazon joined Kubernetes
on 10.08.2017 »

WHY KUBERNETES?

e Data Center as a Black Box
e Batteries foryour (12factor) apps

WHY KUBERNETES?

e Give you complete control over your application
with simple yaml config files

e Use labels to auto-wire your app to monitoring,
logging, and alarming

e Letyouto, almostforget, about the infrastructure

Batteries

Load Balancing

Name Service Discovery

Metadata and Annotation support
Decoupled interface and implementation
Labeled based matching

DATA CENTER AS A BLACK BOX

KUBERNETES

Ingress Controller

Docker
Image
> @ Kubernetes
k8s config:
Service
Deploymentt > | || | = -
o) o)
o o o o
1) 1) 1) 1)

make docker push; kubect| create -f app-srv-dpl.yaml

SCALE UP! SCALE DOWN!

Ingress Controller

apg ey

> Kubernetes

scale 3x @

SPON
SPON
SPON
9PON

kubectl| --replicas=3 -f app-srv-dpl.yaml|

INGRESS CONTROLLER

apl.smacc.io/vl/users = service: users-vl
apl.smacc.io/v2/users = service: users-v2
apl.smacc.io/accounts = service: accounts
Smacc.io = service: website

INGRESS CONTROLLER

e INTERNET PRIVATE NETWORK

ORCHESTRATOR

AP"DOMAlN-COM (DOCKER, SWARM, MESOS...)
_‘-—__-_h-_-___-_'—‘—-—-_

\ i / ‘ API -
\: ! DATA

OMAIN.COM/WEB)
o |

J

Al
{

| \ s T WEB

e

treefik ‘ ADMIN

BACKOFFICE 1

%
/ N %\j BACKOFFICE 2

nasst

/

Ap; BACKOFFICE 3

‘—-——-—-"—_’

ROLLING UPDATES!

Ingress Controller

> Kubernetes
Docker @
/ \ Image
v2

= = = =
(&) (o) (o) o
o o o o
)) o o

kubectl set image deployment/app app=app:v2.0.0

ROLLING UPDATES!

Ingress Controller

arp

> Kubernetes

Docker @
\ Image

v2

9PON
9PON
9PON
9PON

ROLLING UPDATES!

Ingress Controller

&rp e

> Kubernetes

Docker @
\ Image

v2

9PON
9PON
9PON
9PON

ROLLING UPDATES!

Ingress Controller

&y e

> Kubernetes

Docker @
\ Image

v2

9PON
9PON
9PON
9PON

Port

30000

@/

Kubernetes
Worker

Node

LOAD BALANCING

X

<<Requests>>

Port
130000

/_

\

Servicd-

Load Balancer

Port Port
130000 30000

T
O

Kubernetes
Worker

e

@

Node

Kubernetes Kubernetes
Worker Worker
Node Node

RESISTANCE!

Ingress Controller

Kubernetes

= = =
o o
Q Q Q
®)

#*

RESISTANCE!

Ingress Controller

&y e

» Kubernetes

oy

SPON

9PON

9PON

RESISTANCE!

e When the node dies in flames

e When other apps (with higher guaranteed quotas)
eats all memory

e \WWhen you need to drain nodes before upgrade

e You can easily scale up, create machine and join it to
cluster (easier with kops or on GCE)

FEDERATION

Global LoadBalancer

On-premise Amazon Google

Poland eu-west-1 asia-southeast]

MUCH MORE

Plug-and-play integrations:

e integration with AWS, Google Cloud Platform, and
Azure

e multiple drivers for network, storage,...

e you canrun on minikube

MUCH MORE

Kubernetes administrated with kubernetes:

e everything runin pods

e e.g..,you deploy your log collectors for k8s as pods:

http://wbarczynski.pl/centralized-logging-for-kubernetes-with-fluentd-and-
elasticsearch/

http://wbarczynski.pl/centralized-logging-for-kubernetes-with-fluentd-and-elasticsearch/

BASIC CONCEPTS

Name Purpose

Service Interface Service Name,
port, labels,
annotations

Deployment Factory How many pods
with which docker
Images, labels

Pod Implementation 1+ dockerimages

running in 1 pod

BASIC CONCEPTS

e config / secret = config and files
e ingress-controller = url pattern =» service

apiVersion: vl
kind: Service
metadata:

name: api-status
spec:

ports:

- port: 80
protocol: TCP

selector:

app: api-status

SERVICE

service.yaml:

SERVICE

kubectl create -f api-status-srv.yaml
kubectl create -f api-status-dpl.yami

kubectl -it exec app-999-8zh1p /bin/bash

curl http://api-status/health
0]

BASIC CONCEPTS

Service Name
Service

Service Port

Labels
_——> Pods
~
//
/ /4 A< < Creates >>
~< Creates >> y \
/ / \
/ N
Deployment ’/// Deployment

deployment.yaml

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: api-status-nginx
app: api-status
spec:
replicas: 1

template:
metadata:
labels:

name: api-status-nginx
app: api-status
spec:

CONFIG

e env variablesin deployment:

env.
- name: SEARCH ENGINE_USER

value: mighty _mouse

CONFIG

e feed envs from configmaps:

env:
- name: SEARCH ENGINE USER
valueFrom:

configMapKeyRef:
name: my-config
key: search.user

CONFIG

e you can ship files using configmaps/secrets

kubectl create configmap my-config-file

--from-file=config.json

CONFIG

You can also run your own:

e HashiCorp Consul or etcd
e HashiCorp Vault

METADATA AND ANNOTATIONS

Auto-wiring

Precise discovery

Reporting

Labeling targets for security scans
Labeling critical services for oncall (see
alertmanager)

MONITORING WITH KUBERNETES

e You deploy a memcached
e Exposed its prometheus metrics on metrics/
e How to ship metrics?

ANNOTATIONS!

memcached-0-deployment.yaml

apiVersion: v1
kind: Service
metadata:
name: memcached-0
labels:
app: memcached

kubernetes.io/name: "memcached"
role: shard-0
tier: backend

annotations:
prometheus.io/scrape: "true”
prometheus.io/scheme: "http"

prometheus.io/path: "metrics”
. . ||

https://github.com/skarab7/kubernetes-memcached

INGRESS CONTROLLER WITH TRAEFIK?

traefik

ANNOTATIONS!

Use traefik instead of built-in reverse proxy

apiVersion: extensions/vlbetal
kind: Ingress
metadata:
name: api-status
namespace: production
annotations:

kubernetes.io/ingress.class: traefik

Spec:
rules:
- host: api.example.com
http:
paths:
- path: /status

LABELS!

Monitoring rule that uses labels:

ALERT ProductionAppServicelnstanceDown
IF up { environment = "production”, app =~ ".+"} == 0
FOR 4m

ANNOTATIONS {
summary = "Instance of {{$labels.app}} is down",
description = " Instance {{$%labels.instance}} of app {{$labels.app}

}

[| B

AlertManager

LABELS!
Call sbif the label is severity=page:

group _by: [cluster]

receiver: team-pager
routes:
- match:
severity: page
receiver: team-pager

receivers:
- name: team-pager
opsgenie_configs:
- api_key: $API_KEY
teams: example _team

AlertManager

THERE IS SO MUCH MORE

® resource quotas

e events in Kubernetes
e readiness probes

e liveness probes

e volumes

o stateful

®* namespaces

KUBERENTES

Awesome command-line

Resilient platform

simple YAML files to setup your service,
service discovery included

annotations and metadata discovery included

0.1=1.0

Your component needs to get much more smarter.

SERVICE SELF-CONSCIOUSNESS

Your endpoint:

e metrics/

o alertrules/- [WIP]

e health/or healthz/
e info/

DEEP LOOK INSIDE

when | am ready to serve requests
when | need to restart myself
what to do when dependent services are down

DEEP LOOK INSIDE

e Am | really stateless?
e Caching?
e fail-fast, start fast

RELATIONS WITH OTHERS

e master-worker relationships
e waiting for other resources / services

12FACTOR APPS

e find services by name or URI
e move the important config to environment variables

LOGGING

e [ogstash json format
e make configurable with ENV variable

EFKor ELK

WHAT WITH YOUR DATABASES

o Keepitin aseparated (k8s) cluster
e The best, go with DaaS
o With Stateful,you can run your db in k8s

Long discussion...

MIGRATION OF ENV

Staging, production, canary, green/blue ...

o Ifyou have $SS, have a separated k8s cluster
e If not, use Namespaces

APPS IN NEW WORLD

12 factor apps (Heroku, 2012)
much much smarter

much faster

much more predictable

much harder to develop :D

Forging experience into code [WIP]:
https://github.com/microdevs

https://github.com/microdevs

THANK YOU

| [} r|-|I i '::.Irl !; ‘:I :

e Il

ves a distance matrix against a region list

; I 1
M |:I :'l_ T;_.;_-.I IE‘;’II;I :‘ |I_::. - .r- _I lr: Ir.'E';lﬂlrl .5 II

jist(tuples, tuples, region_distance)

RS AN i r",:':'rll:ll"f[['.l“.ﬂl'_.lfflj“, -l-l:'h-:'l."‘g‘ﬁf
» matrix([Region. from word(w) fol
) for 1 in db.fit predict(X))

(hiring) Wojciech Barczynski
(wojciech.barczynski@smacc.io)

trix(regions):

= = L - (TR
ves a distance matrix against a region list

g I I
as tuple() for r in regions]

jist(tuples, tuples, region_distance)

Is, *kkwargs):

SCAN(metric="precomputed", *xkwargs)
stance_matrix([Region.from_word(w) for
1) for 1 in db.fit_predict(X)]

Backup slides

6+1STEPS

The big 1 - making your app smarter

1. CLEAN UP

e Single script for repo - Makefile [1]
e Resurrectthe README

[1] With zsh or bash auto-completion plugin in your terminal.

2. GET BACKALL THE KNOWLEDGE

e Puppet, Chef, ... = Dockerfile
e Check the instances = Dockerfile, README.rst
e Nagios, ... = README.rst, checks/

3. INTRODUCE RUN_LOCAL

e make run local
e Anice section on how to runin README.rst
e Use: docker-compose

The most crucial point.

4. GET TO KUBERNETES

e make kube create config
e make kube apply
e Generate the yamlfiles if your envs differ

5. CONTINUOUS DEPLOYMENT

Simple components:

o test code, build docker, push to docker repo

e run the rolling update:
kubect| set image deployment/api-status
nginx=nginx:1.9.1

e | use TravisCl

5. CONTINUOUS DEPLOYMENT

Complex components:

e with label-based matching, the sky is the limit

6. KEEP IT RUNNING
Brigde the new with old:

e You can add your external servies to the k8s Name
Service

e You can bridge Kubernetes services to your Service
Discovery [1]

[1] You can subscribe to K8S events to keep, e.g., your consul in sync

