
Speeding up a Django project
Paweł Marczewski

What this talk will be about

Django.

Some advice is Postgres-specific
(but should be easy to adapt).

Mostly data-processing / database
performance.

I hope for some advice from you as well!

Codility
A service for testing programming
skills (think olympiad/contests, but
with simple problems).

The website uses Django and
PostgreSQL.

No strong backend/frontend divide
(yet).

No huge amounts of data, but we’
re running into performance
problems from time to time.

Here’s what we came up with...

Use SQLite-in-memory for unit tests

DATABASES['default'] = {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': ':memory:',

}

Blazing-fast startup time!

Use SQLite-in-memory for unit tests

It’s good to test on production engine as well
(your CI server can do both).

Your code has to support SQLite.

Alternative (Postgres): turn off fsync for tests.

Other testing tips

If migrations are a bottleneck, you can squash
them.

Parallelize your builds (useful if you have many
Selenium tests).

Check your queries

django-debug-toolbar

https://github.com/django-debug-toolbar/django-debug-toolbar

Check your queries

Or, just look at plain Django logs
(DEBUG level).

Use select_related

User
Account

ID User Account

1 foo@example.com Foo

2 foo2@example.com Foo

3 bar@example.com Bar

Use select_related

Rendering User.objects.all():

SELECT ... FROM users;

SELECT ... FROM accounts WHERE id = 1;

SELECT ... FROM accounts WHERE id = 2;

SELECT ... FROM accounts WHERE id = 3;

...

Use select_related

Rendering
User.objects.select_related('account'):

SELECT ... FROM users

 JOIN accounts

 ON users.id = accounts.user_id;

Much better!

Use prefetch_related

ID Account Users

1 Foo foo1@example.com,
foo2@example.com,
foo3@example.com

2 Bar bar1@example.com,
bar2@example.com

Use prefetch_related

Rendering Account.objects.all():

SELECT ... FROM accounts;

SELECT ... FROM users WHERE account_id = 1;

SELECT ... FROM users WHERE account_id = 2;

SELECT ... FROM users WHERE account_id = 3;

...

Use prefetch_related

Rendering
Account.objects.prefetch_related(‘user_set’):

SELECT ... FROM accounts;

SELECT ... FROM users

 WHERE account_id in (1,2,3,4);

Or just drop to raw SQL

Blog.objects.extra(
 select={
 'entry_count': 'SELECT COUNT(*) FROM blog_entry
WHERE blog_entry.blog_id = blog_blog.id'
 }
)

Make O(1) queries per page.
General rule:

Do more in SQL than in your code

Example: data migrations
(convert data from one format to another).

Your database engine will be WAY more
efficient at this than Python!

A complicated “UPDATE WHERE…” can be
orders of magnitude faster than a for-loop.

Example from Postgres documentation.

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.65..118.62 rows=10 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

Check what your queries are doing

Check what your queries are doing

In Postgres, EXPLAIN will give you a query plan.

EXPLAIN ANALYZE will also run the query and give you
the timing.

Often, you’ll find out you need another index!

Even better: run statistics on the production database.

PostgreSQL 9.0 High Performance contains a good explanation of query plans and Postgres
internals.

Memoize properties
class User(models.Model):

 @property

 def available_credits(self):

 return self.query_for_credits()

Memoize properties
@property

def available_credits(self):

 if not hasattr(self, ‘_available_credits’):

 self._available_credits = self.query_for_credits()

 return self._available_credits

Useful for complicated pages.

Downside: cache invalidation.

Use cache

Cache arbitrary data using cache.get() and
cache.set().

Cache template fragments.

Use django-cache-machine to cache models
(useful for data that changes rarely but is
accessed often).

Compute things asynchronously

Example: our real time map widget.

Compute things asynchronously

Don’t do this:

def get_map_data():

 if not cache.get(‘map_data’):

 data = compute_map_data()

 cache.set(‘map_data’, data, 5 * 60)

 return cache.get(‘map_data’)

Compute things asynchronously

Use a task queue, like Celery.

Support a “not ready yet” response and initiate
re-computation.

Or just compute things periodically.

Good for pages with lots of views (like contest
leaderboards).

Don’t auto-reload, poll

Our report used to auto-reload
until it was assessed and ready.

However, polling a single AJAX
endpoint (“is it ready yet?”)
made the page less straining for
our servers.

If all else fails...

Just use a stronger server!

What comes next for us?

More aggresive HTML fragment caching.

Better frontend / backend split (serve static
HTML and JS, pass data using JSON).

Sharding / horizontal database scaling.

Questions?
Comments?

You can reach me at pwmarcz@gmail.com
and http://pwmarcz.pl.

mailto:pwmarcz@gmail.com
http://pwmarcz.pl

