Python & Viemory

Tomasz PaczkowskKi
@oinopion
PyWaw, 14.07.2014



Disclaimer

Code was executed on Ubuntu 12.04 x64 and
cPython 2.7.3

I'm not an expert in cPython
It's much more complicated than it looks like

I'm not even sure anything here is true



Case Study

* Long lived web process
* Periodically allocates boatloads of memory

e For some reason, it's never released



Distilled code

big = alloc(100000)
report( 'After alloc')
small = alloc(1l)

del big

report( 'After del')



Output

S python frag.py
After alloc: 502244 kB used

After del: 501484 kB used



Problem hammering

big = alloc(100000)
report( 'After alloc')
small = alloc(1l)

del big

report( 'After del')
import gc; gc.collect(2)
report( 'After gc')



S python frag.py
After alloc: 502216 kB used

After del: 501460 kB used
After gc: 501496 kB used



Enter our hero

Guppy is the only tool I've found usable and useful
hitp://guppy-pe.sourceforge.net
Documentation is... not it's greatest point

Still better than others


http://guppy-pe.sourceforge.net

Debugging with Guppy

from guppy import hpy
print hpy().heap()[:3]

print hpy().heap()[:3]



Output

S python frag-debug.py

After alloc: 502448 kB used
Partition of a set of 116311 objects.
Total size = 506138848 bytes.

Index Count % Size % Cumulative % Kind
0 110222 95 504818568 100 504818568 100 str
1 179 0 844888 0 505663456 100 list

2 5910 5 475392 0 506138848 100 tuple

After del: 511676 kB used
Partition of a set of 16028 objects.
Total size = 1510312 bytes.
Index Count % Size % Cumulative % Kind
0O 10061 63 814552 54 814552 54 str
1 5894 37 474104 31 1288656 85 tuple
2 73 0 221656 15 1510312 100 dict of module



Diagnose:
Memory Fragmentation

sma ll |




However, removing all “small” allocations did
not help In this case.



Fun with Python allocator

* Python does not use malloc directly — too costly
for small objects

* |nstead iImplements more sophisticated allocator
on top of malloc



Free |Ists

e For handful of most common types Python keeps
unused objects of similar size in so called free lists

* Those are most significantly: lists, dictionaries,
frames

e Speeds up code execution immensely by not
hitting malloc and saying in user space



Free list torture

big = []
for 1 in xrange(500):
strings = alloc(1)

big.extend(strings)
report( ' After work')

del big
report( 'After del')



Output

S python lists.py
After work: 622172 kB used
After del: 621248 kB used



Solutions

 Make better use of memory

* Subprocess

* jlemalloc” via LD_PRELOAD



Using jemalloc

S python frag.py
After alloc: 502212 kB used

After del: 501456 kB used
After gc: 501492 kB used

$ export LD PRELOAD=/usr/lib/libjemalloc.so.l
S python frag.py

After alloc: 814084 kB used

After del: 11060 kB used

After gc: 6988 kB used



Conclusions

Sometimes memory leak is not what it seems
malloc from glibc is not the best of breed
Do memory intensive work in subprocess

Be mindful when using C extensions



Thanks. Questions?



