Python data processing
libraries

and how to stitch them into a data platform

\ 4

p_ N —
l -
LY
CURSOR AB
Do Substrait §iu g .

dlkHub

Mlodern Data Stack

Layers
e Data Ingestion
e Data Storage
e Data Transformation
e Data Use
e Data Governance

Language: SQL

It is not really a stack. No open
standards and vendors taking it

all.

DATA
INGESTION

‘\\\‘ Fivetran

E2 Stitch

*==SINGER

/f}) Airbyte

DATA DATA DATA
WAREHOUSE LAKE LAKEHOUSE

2V Starburst

amazon aglill amazon
REDSHIFT - ATHENA

DATA TRANSFORMATION

¥ dbt IA

MATILLION

R‘Aﬁlrﬁow + R A pgthon

DATA CATALOG

O Data discovery an Collaboration

12! Data lineage [Z] Glossary

&2 Data governance [*] Open APIs

databricks

BUSINESS
INTELLIGENCE

& Looker

¢ +ableau

M MoDE

T. ThoughtSpot

DATA
SCIENCE

~ jupyter

& DataRobot

atlan
[\ Amundsen

\)J DataHub

dlkHub

Newm Type of User and early ML stack

New User: Data Scientist

“Stack”:

Ingestion: Python
Storage: csv files, blobs

Transformations: pandas, numpy, all ML libraries
Data visualization: notebooks, matplotlib etc.

A set of libraries glued together with Python

A set of “de facto” standards to make it a little bit easier:

pandas, numpy, iPython...

dlkHub

Composable data stack: same concept - for data

Composability

Portability (pip install data platform)
Open “standards” (mostly de facto)
Breaking silos

Tool Specialization

Ul is Code (Python)

dlkHub

https://wesmckinney.com/blog/looking-back-15-years/

hat®s there? Mhat’s missing?

e Data Representation & Storage: arrow, parquet, avro

e Table Storage: Delta, Iceberg

® Query Engine: duckdb, polars, datafusion, ibis, sqlglot ...

e Data Ingestion: Python, singer, dit

e Data Transformation: ML libs, dataframes, sqlmesh, ibis, hamilton ...
e Runners, orchestrators: Airflow, temporal, modal

e Data (Power) Use: Evidence, Observable, Notebooks

e Data Governance: Nessie, Hive (catalogs), SODA (data quality), data contracts (?)

dlkHub

Enablers: columnar data in-memory and at rest

PARQUET

Released in 2013, Apache Parquet is an open-source columnar storage format
designed for efficient data storage and retrieval in large-scale data processing
frameworks.

Efficient compression, Optimized 10

ARROW

Launched in 2016, Apache Arrow is an open-source in-memory columnar data
format that facilitates high-performance analytics.

Standardized Memory Representation,

dlkHub

Columnar storage

row-store

+ easy to add/maodify
a record

L—r—l—l—'—| - might read in unnecessary
‘_—I—I—I,—Tﬁ data

column-store

+ only need to read in
relevant data

[e e e e
i, T Ty, Ty, Ty e

=>suitable for read-mostly, read-intensive, large data repositories

dltHub

Python bindings for arrow: pyarromw

e Tons of things combined in one lib: iamart A
in-memory tables, compute, L
parquet storage, parsers, writers, e ¥
datasets, query engines, remote Rl ol
filesystems. }

e Very well integrated with Python # create a PyArrow Table from the data

table = pa.Table.from_pydict(data)
print(table.schema)

native objects and Pandas

transform the 'value' column (e.g., multiply each value by 2)

transformed_value = pc.multiply(table[‘value'], 2)

replace the 'value' column with the transformed data
table = table.set_column(
table.schema.get_field_index('value'),
'value',
transformed_value

save the transformed table to a Parquet file
pg.write_table(table, 'transformed_data.parquet')

dlkHub

Open table formats: new industry standards

What if we want to update, delete data in parquet? Manage many tables? Evolve
the schema? ACID Transactions? Petabytes of data?

ICEBERG

Created by Netflix to manage their massive data lakes, Iceberg was contributed to the
Apache Software Foundation in 2018.

It is the new storage standard for warehouses. Industry adopting it.

Complicated ecosystem of vendors: query engines, catalogs.

DELTALAKE

Developed by Databricks to address the challenges of data lakes, Delta Lake was
open-sourced in 2019.

dlkHub

Jpen table formats: delta-rs

DELTA-RS
Python binding for rust library. Linux

Foundation. Started independently from
Databricks. Pretty feature complete.

Append’ replace, merge from deltalake.writer import write_deltalake
Schema evolution

Table maintenance
Seamless arrow integration

write_deltalake("s3://my-bucket/dataset/table", arrow_table)

dlkHub

Jpen table formats: pyiceberg

PYICEBERG
Supports table storage and catalogs. o
Apache Foundation. Lacks several prapiin s Lo R b
fundamental features. Low level interfaces. \'

Mandatory catalog. # Load or

catalog = 1« talog("default™, uri="warehouse/path")

Gaining a lot of momentum. fine table identifier

e_identifier = "my_namespace.my_table"

schema=iceberg_schema,
partition_spec=None,
properties={"format-version": "2"},

Load the Iceberg table
table = catalog.load_t table_identifier)

with table.new

writer.appe

Query engines: separated from data

A kind of innovation in data:

e Open storage and table formats enable query engines independent from
data

e Move query engine where your data is (vs. data to the query engine)
e Simple, fast, portable, in-memory and hybrid. No backend

Ecosystem of interfaces and optimizers:

e Data frame expressions, to-sql compilers: ibis
e SQL parsers, optimizers, lineage: sqlglot

dlkHub

* Query engines: duckdb and datafusion

e Fast, portable analytical
database
e Scanners for parquet, con = duckdb.connect()
iceberg, delta, postgres, json,
CSV...
e Also own optimized storage.
e Very good Python bindings , .
. . . SELECT *, encode(binary_col, 'hex') AS hex_string
with variety of interfaces. :
FROM my_table
e Can query arrow. o

® Thriving community arrow_table = con.execute(query).arrow()

import duckdb

query =

dlkHub

Query interfaces: ibis, sqglglot

Are we back to SQL? No

Ibis converts data frame expressions
into SQL and talks to tons of backends.
Sqlglot and duckdb inside (query files,
arrow tables)

Lazy execution (only when
materialized)

Very composable

Also https://github.com/data-apis

expr = table.filter(table.value > 50).select('id",

expr = table.order_by(ibis.desc(table.timestamp))

expr = table.group_by('category').aggregate(
total_amount=table.amount.sum(),
average_amount=table.amount.mean()

)

‘value')

expr = orders.join(customers, orders.customer_id == customers.id).select|(

orders.order_id,
customers.name,
orders.total_amount

dlkHub

Shift left: data powmer user

Bl as code S
Share data back #¢ Orders by Chanoel
Real time updates : The argest chasnels
Duckdb inside (WASM) oato={sates ol s «one - Attribution Model

data={sales by channel)

pip install : P Orders by Channel

select . ‘ Z
The largest channels are currently Goog

chanme L,
date_trunc(“MONTH™, order_datetime] as Facebouk Ads und Google Organic

‘
channel_month,
sl as sales Sales attributed to each channel

https://evidence.dev/ ditHub

https://docs.google.com/file/d/1GqPbScAw_FMvG2bsKjnor0wst_ynxzTl/preview

Stitching together data platforms: dlt

dlt is Python 0S

° ° ‘0ld School’]
library for moving e el
d a t a 55 :m K&i‘rﬁuw @ dagster

dbt %usaLMesh < SDF

e Talks to modern and composable —
data stacks. y

e Lightweight, no backend |:"|:H|J|:|

e Automates data loading, schema
inference, incrementals

NNNNNN
EEEEEE
reamlit FREFLEH

Modal <> Temporal oo GitHul
4 TOWER

Y VOLTRON DATA ‘New School’

dlkHub

Rest api - json - parquet - iceberqass

« Partitioned, incremental dlt resource

import dlt
from dlt.sources.helpers.rest_client import paginate as requests

@dlt.resource(
primary_key="id",
table_name=lambda i: i["type"],
table_format="iceberg"”,
write_disposition="append",
columns={"_dlt_load_id": {"partition": True}},

incremental=dlt.sources.incremental("created_at", row_order="desc"),

events():

for page in requests(
"https://api.github.com/repos/dlt-hub/dlt/events"”,
params={"per_page": 100},

yield page dltHub

An example data platform: PostHog

e PostHog: all-in-one open source platform that N PostHog
helps +200,000 developers build successful
products

e dIt & temporal are the main OSS tools that power
the recently launched data warehouse product in
Posthog’s storage in S3

Sync all of your data into PostHog

After a brilliant beta, we're launching our data warehouse and
enabling you to sync data from external sources into PostHog.

® Th e Sta C k: That means you can do things like...
« Sync Stripe to understand how sign-ups translate to MRR
O d It to move d ata . ubspot to identify leads that take specific actions

Sync Zendesk to see how SLA metrics impact retention

In fact, you can sync from almost anywhere to bring your data into

o pyarrow + delta-rs for storage and table
maintenance

PostHog. We also added a generous free allowance to get you
started, after which we bill based on the number of rows synced.

Synced rows per month Price per row

o duckb and clickhouse as query engines 0-1M Free

1M -10M $0.000015
10M - 100M $0.000010

o temporal to run

100M+ $0.000008

o Posthog platform to explore data

dlkHub

dlt+ demo

dlt+ is dIt for data platform teams

£\ DELTA LAKE
. DATAFUSION

/\ DELTA LAKE

Do Substrait

1

N
BN
LY

CURSOR

dlkHub

