AsynclO in Production
War Stories

Michat WysokinsKki

17.09.2018

@kama]

Experience the Edge

* is a content delivery network (CDN)
and cloud services provider

 has deployed the most pervasive, highly-
distributed CDN with more than 250,000

servers in over 130 countries and within
more than 4,000 networks around the world,

which are responsible for serving between Ak

10 and 30% of all web traffic h ama'

* protects against web attacks such as rien Neé (
SQL injection, XSS and RFl

 has 16 offices in EMEA (Europe, Middle
East and Africa)

« and 1 office in Poland (Krakow)

2 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

3

Event Loop print sum()

!
|
|
|
|

StopIteration()

| AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78

I
|
I
|
|
I
1

1
|
|
|
|
|
|
|

compute()

print("Compute
yield from sleep(1l.0)

return

1 + 2

£

Akamai Experience the Edge

« September 22" 2012
asyncore: included batteries don't fit — submitted to Python ideas

« December 12th 2012
PEP 3156

« March 16" 2014 [3.4] (provisional)
AsynclO module release with Python 3.4 (as provisional API)
@asyncio.coroutine/yield from (introduced in 3.3)

« September 13t 2015 [3.5]
async/await keywords introduced with Python 3.5
asynchronous iteration, asynchronous context managers

 December 23 2016 [3.6] (stable)
asynchronous generators, asynchronous comprehensions

4 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

for exec _uuid in tasks:
task data = await self.task queries.get data(exec uuid)
asyncio.ensure_future(self. run_task(exec uuid))

exec_statuses = await asyncio.gather(
*[self._run_task(ip, task data) for ip in ips]

)

5 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

How asyncio code looks like — with timeouts

await asyncio.wait_for(
loloop.run_in_executor(
self.processing_pool, lambda: plugin.run(
Ip, **exec data.args

)
)

=getattr(plugin, 'timeout’, self.default_plugin_timeout)

)

async with timeout(1.5): # async-timeout
await inner()

F
6 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 (Akamal Experience the Edge

 It's useful for handling independent tasks (similar to threads™)
* Everyone started doing it in their own way
* Modifying CPython was giving hope of better performance

7 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

A story of mixing AsynclO and threads

fﬂi
8 | AsynclO in production - War Stories | Michat Wysokifiski | PyWaw #78 (Akamal Experience the Edge

We started with a bit of a...
-1
e TR

D

R

—
9 | AsynclO in production - War Stories | Michat Wysokiriski | PyWaw #78 (Akamal Experience the Edge

Task was destroyed but it is pending!
task: <Task pending create() done at run.py:5
wait for=<Future pending cb=[Task. wakeup()]>>

ERROR:asyncio: Task exception future:
<Task finished coro=<SSHConnection. run_task() done,
exception=CancelledError()>
concurrent.futures. base.CancelledError
was never retrieved

10 | AsynclO in production - War Stories | Michat Wysokiriski | PyWaw #78 Akamai Experience the Edge

« Tornado (ioloop is a wrapper for asyncio loop)

« Momoko (async wrapper for psycopg?2)

* uvloop (wrapper for libuv, replacement for asyncio loop)

« async_test (to get rid of the standard library low level testing code)

11 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

« Tornado (ioloop is a wrapper for asyncio loop)

* uvloop (wrapper for libuv, replacement for asyncio loop)

basically rewrites asyncio loop which sometimes causes
unexpected results

12 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

@asyncio.coroutinel/yield from™* -> async/await

f-i
13 | AsynclO in production - War Stories | Michat Wysokiiski | PyWaw #78 (Akamal Experience the Edge

@tornado.gen.coroutinelyield -> async/await

f-i
14 | AsynclO in production - War Stories | Michat Wysokifiski | PyWaw #78 (Akamal Experience the Edge

A story of an asynchronous http client

(A
15 | AsynclO in production - War Stories | Michat Wysokifiski | PyWaw #78 (Akamal Experience the Edge

The good, the bad and the ugly

class A:
def get data(self):

with ###. TCPConn(ssl_context, =1) as tcp_conn:
async with ###.HttpClient(tcp_conn) as http_client:
async with http_client.get(self.streamer_url.encoded) as response:
content_iterator = response.content. aiter () # no aiter()
while not self.stop_streaming:
async with async_timeout.timeout(60):
try:
data = await content_iterator. anext () # no anext()
except StopAsynclteration:
logger.debug('Stop aiteration for stream: %s’, str(self))
break

ﬁ
16 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 (Akamal Experience the Edge

¥ Memory usage

CPU usage percent

§ o,

17 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 *Akamai Experience the Edge

18 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

import aiojobs

scheduler = await aiojobs.create scheduler(
=MAX_TASKS SIZE,

=WAITING DOCS BUFFER_SIZE,
=5

)

await scheduler.spawn(

es_index_wrapper(document, es client)
)

19 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 \Akamai Experience the Edge

ips = await dns_resolver.query(edns[domain_info.name],)
with this line we reduced running time from 12 hours to 8
minutes

20 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

A story of a group of services communicating only
with messages

6
21 | AsynclO in production - War Stories | Michat Wysokiriski | PyWaw #78 (Akamal Experience the Edge

PROS

« Performance gain for applications
relying on |O (network, DB)

 Better resource utilization
(less time spent on communication
and synchronization)

 Being on the technological edge
gives you new ways to solve old
problems

* |t makes you follow Python
progress and contribute

22 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78

CONS

Still many missing features or know

Issues

async iterators have messy indeterministic
cleanups

itertools for async is missing

very early implementations or complete lack of
modules for interacting with popular services
(zookeeper, ElasticSearch, requests, and more)

Still young implementation
with many bugs and
Incompatibilities

The community becomes
more and more divided

Gkamai Experience the Edge

« MICROservices

* Projects with a small list of dependencies

« Simple http APIs

* Projects with big load but light processing

* Projects where threads are not enough

* Projects where the rest of technology stack is well understood

23 | AsynclO in production - War Stories | Michat Wysokiriski | PyWaw #78 Akamai Experience the Edge

* Projects heavily relying on threads

* Projects with dependencies heavily using threads, unless you know
their implementation really well

* Projects where processing of a single task takes a lot of time
minutes/hours

* Projects doing uncommon stuff

24 | AsynclO in production - War Stories | Michat Wysokiriski | PyWaw #78 Akamai Experience the Edge

25 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

michal.a.wysokinski@gmail.com

26 | AsynclO in production - War Stories | Michat Wysokinski | PyWaw #78 Akamai Experience the Edge

