
| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #781

AsyncIO in Production
War Stories

Michał Wysokiński

17.09.2018

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #782

Akamai
• is a content delivery network (CDN)

and cloud services provider

• has deployed the most pervasive, highly-
distributed CDN with more than 250,000
servers in over 130 countries and within
more than 4,000 networks around the world,
which are responsible for serving between
10 and 30% of all web traffic

• protects against web attacks such as
SQL injection, XSS and RFI

• has 16 offices in EMEA (Europe, Middle
East and Africa)

• and 1 office in Poland (Kraków)

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #783

How does it work

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #784

A bit of history

• September 22nd 2012
asyncore: included batteries don’t fit – submitted to Python ideas

• December 12th 2012
PEP 3156

• March 16th 2014 [3.4] (provisional)
AsyncIO module release with Python 3.4 (as provisional API)
@asyncio.coroutine/yield from (introduced in 3.3)

• September 13th 2015 [3.5]
async/await keywords introduced with Python 3.5
asynchronous iteration, asynchronous context managers

• December 23rd 2016 [3.6] (stable)
asynchronous generators, asynchronous comprehensions

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #785

How asyncio code looks like

for exec_uuid in tasks:
task_data = await self.task_queries.get_data(exec_uuid)
asyncio.ensure_future(self._run_task(exec_uuid))

exec_statuses = await asyncio.gather(
*[self._run_task(ip, task_data) for ip in ips]

)

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #786

How asyncio code looks like – with timeouts

await asyncio.wait_for(
ioloop.run_in_executor(

self.processing_pool, lambda: plugin.run(
ip, **exec_data.args

)
),
timeout=getattr(plugin, 'timeout', self.default_plugin_timeout)

)
async with timeout(1.5): # async-timeout

await inner()

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #787

Reasons for its existence

• It’s useful for handling independent tasks (similar to threads*)
• Everyone started doing it in their own way
• Modifying CPython was giving hope of better performance

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #788

A story of mixing AsyncIO and threads

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #789

We started with a bit of a…

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7810

Yyy, what just happened?

Task was destroyed but it is pending!
task: <Task pending create() done at run.py:5
wait_for=<Future pending cb=[Task._wakeup()]>>

ERROR:asyncio:Task exception future:
<Task finished coro=<SSHConnection._run_task() done,

exception=CancelledError()>
concurrent.futures._base.CancelledError

was never retrieved

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7811

Dependencies nightmare

• Tornado (ioloop is a wrapper for asyncio loop)
• Momoko (async wrapper for psycopg2)
• uvloop (wrapper for libuv, replacement for asyncio loop)
• async_test (to get rid of the standard library low level testing code)

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7812

Dependencies nightmare

• Tornado (ioloop is a wrapper for asyncio loop)
• Momoko (async wrapper for psycopg2) – PRETTY DEAD
• uvloop (wrapper for libuv, replacement for asyncio loop)

basically rewrites asyncio loop which sometimes causes
unexpected results

• async_test (to get rid of the standard library low level testing code)
– single developer, not super stable (resource allocation), not
compatible with uvloop

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7813

@asyncio.coroutine/yield from* -> async/await

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7814

@tornado.gen.coroutine/yield -> async/await

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7815

A story of an asynchronous http client

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7816

The good, the bad and the ugly

class A:
def get_data(self):

with ###.TCPConn(ssl_context, limit=1) as tcp_conn:
async with ###.HttpClient(tcp_conn) as http_client:

async with http_client.get(self.streamer_url.encoded) as response:
content_iterator = response.content.__aiter__() # no aiter()
while not self.stop_streaming:

async with async_timeout.timeout(60):
try:

data = await content_iterator.__anext__() # no anext()
except StopAsyncIteration:

logger.debug(‘Stop aiteration for stream: %s', str(self))
break

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7817

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7818

A story of an ElasticSearch client

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7819

Fixing async bomb

import aiojobs

scheduler = await aiojobs.create_scheduler(
limit=MAX_TASKS_SIZE,
pending_limit=WAITING_DOCS_BUFFER_SIZE,
close_timeout=5

)
await scheduler.spawn(

es_index_wrapper(document, es_client)
)

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7820

A story of a really simple microservice that gets
one and only one job done

ips = await dns_resolver.query(edns[domain_info.name], 'A')
with this line we reduced running time from 12 hours to 8

minutes

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7821

A story of a group of services communicating only
with messages

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7822

PROS
• Performance gain for applications

relying on IO (network, DB)
• Better resource utilization

(less time spent on communication
and synchronization)

• Being on the technological edge
gives you new ways to solve old
problems

• It makes you follow Python
progress and contribute

CONS
• Still many missing features or know

issues
• async iterators have messy indeterministic

cleanups
• itertools for async is missing
• very early implementations or complete lack of

modules for interacting with popular services
(zookeeper, ElasticSearch, requests, and more)

• Still young implementation
with many bugs and
incompatibilities

• The community becomes
more and more divided

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7823

What projects are best suited for AsyncIO (IMHO)

• MICROservices
• Projects with a small list of dependencies
• Simple http APIs
• Projects with big load but light processing
• Projects where threads are not enough
• Projects where the rest of technology stack is well understood

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7824

What projects are not suited for AsyncIO (IMHO)

• Projects heavily relying on threads
• Projects with dependencies heavily using threads, unless you know

their implementation really well
• Projects where processing of a single task takes a lot of time

minutes/hours
• Projects doing uncommon stuff

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7825

Q&A

| AsyncIO in production - War Stories | Michał Wysokiński | PyWaw #7826

