(Introduction to) Data Quality

Mariusz Slapek

Agenda

- Defining the problem
 - Data Science workflow
 - What can go wrong?
 - What do we mean by Data Quality?
- How to deal with it?
 - Can Python help us?
 - Comparison of available packages
 - So what to choose?
- So let's solve our problem
 - What's next?
- Questions & Answers

Defining the problem

Customer type	Age	Type of travel	Class	Distance	Seat comfort	Food and drink	Baggage handling	Departure delay	Arrival delay	Satisfaction
Loyal Customer	65	Personal Travel	Eco	265	0	0	3	0	4	Satisfied
Disloyal Customer	47	Personal Travel	Business	2464	4	3	4	310	305	Dissatisfied
Loyal Customer	15	Personal Travel	Eco	2138	2	1	4	0	0	Satisfied
Loyal Customer	60	Business Travel	Eco	623	5	4	1	5	10	Satisfied

Airline Passenger Satifaction

Data Science workflow

What can go wrong?

Insufficient data

. . .

Bad data = Bad model

(bad data can mess up how companies decide things)

Incorrect algorithm selection Incorrect hyperparameter tuning Incorrect model deployment Wrong evaluation metrics Poorly collected requirements

The effect of (bad) Data Quality on Model Accuracy in Supervised Machine Learning

What do we mean by Data Quality?

Completeness

You might make a customer's middle name optional, but as long as you have the first and last name, the data is complete

Consistency

Data are represented consistently across the data set

Accuracy

Data accurately represent the "real-world" values

Timeliness

Data represents reality from the required point of time

Validity

For example, ZIP codes are valid if they contain the correct characters for the region

Uniqueness

Some data fields need to contain unique values, if defined. e.g. e-mail

Data Quality process

1. Define requirements Data profiling

2. Data Quality assessments Data Quality rules and quality threshold

- 3. Resolve issues
- 4. Monitor & Control

Can Python help us?

- great_expectations
- pydeequ
- pandera

First glance

	great_expectations	pydeequ	pandera
open source	yes	yes	yes
# stars	8.9k	574	2.6k
# contributors	396	14	105
creation time	6 years ago	3 years ago	4 years ago
last updated	3 days ago	last month	4 days ago
community	slack	-	discord
docs	+	-	+

In greater detail					
	great_expectations	pydeequ	pandera		
pandas support	yes	no	yes		
spark support	yes	yes	no		
data profiling	yes	yes	no		
custom check	yes	yes	yes		
simple anomaly detection	yes	yes	no		
complex anomaly detection	no	yes	no		
hypothesis testing	yes	no	yes		
notification	yes	no	yes		

So what to choose?

It depends, but...

- great_expectations
- Is anomaly detection important to you? *pydeequ*
- Is hypothesis testing important to you? *pandera*

So let's solve our problem

What's next?

- Better quality code
- Airflow

```
gx_validate_pg = GreatExpectationsOperator(
task_id="gx_validate_pg",
conn_id=POSTGRES_CONN_ID,
data_context_root_dir=MY_GX_DATA_CONTEXT,
schema=MY_POSTGRES_SCHEMA,
data_asset_name="strawberries",
expectation_suite_name="strawberry_suite",
return_json_dict=True,
```

How to use Great Expectations in an Airflow DAG to perform data quality checks

Questions & answers

mariusz.slapek@gmail.com

slapekm